
Philips Semiconductors Microcontroller Products Application Note

AN448
Determining baud rates for 8051 UARTs
and other UART issues

Author: Greg Goodhue

1June 1993

The purpose of this note is to expand upon and clarify some aspects
of determining baud rates and crystal frequencies for using a
standard 8051 or 80C51 UART for ordinary RS-232 type serial
communication. The standard baud rate equation is simplified here
and is restated to allow solving for other variables such as the
crystal frequency and timer reload values.

The following discussion assumes that the reader has some
knowledge of the 8051/80C51 UART and timers. This should be
considered a supplement to the information presented in the Philips
80C51 Family Microcontroller Data Book sections on
Timer/Counters and the Standard Serial Interface.

Since this discussion assumes the use of a standard UART for
RS-232 serial communications, the UART will be used in modes 1 or
3 (variable baud rates) and timer 1 will be used in mode 2 (8-bit
auto-reload mode) as the baud rate generator. All of the equations
shown here give an option for two clock divisors depending on
whether the SMOD bit is used on a CMOS microcontroller. For an
NMOS device, always use the default value (SMOD is not = 1).

The basic equation for a timer reload value can be stated as:

TH1 = 256 –
Crystal Frequency/384 (or 192 if SMOD = 1)

Baud Rate

Example:

To obtain a timer reload value for a 9600 baud serial data rate with
an 11.0592 MHz crystal:

256 –
11,059,200/384

9600
= 256 – 3 = 253, or FD hexadecimal

The equation can also be solved to derive the baud rate or the
crystal frequency from the other information as follows:

Baud Rate =
Crystal Frequency/384 (or 192 if SMOD = 1)

256 – TH1

Minimum crystal
frequency for a
given baud rate

= Baud Rate × 384 (or 192 if SMOD = 1)

Thus, the minimum crystal frequency that may be used for 19.2k
baud communication on a CMOS part with SMOD = 1 would be
19200 × 192, which gives 3.6864 MHz. When using this equation,
the timer reload value TH1 for the maximum baud rate is always 255
(256 – 1) or FF hexadecimal.

Of course, any even multiple of the frequency obtained in this
manner will also support the same baud rate with a different timer
reload value. For instance, four times 3.6864 MHz is 14.7456 MHz.
At that crystal frequency, 19.2k baud is attained with a timer reload
value that gives one fourth of the timer overflow rate: 252 (256 – 4)
or FC hexadecimal.

Philips Semiconductors Microcontroller Products Application Note

AN448
Determining baud rates for 8051 UARTs
and other UART issues

June 1993 2

CRYSTAL FREQUENCIES USED FOR STANDARD
BAUD RATES
The following chart shows possible crystal frequencies for use with
the 80C51 UART at standard baud rates. The chart assumes use of
the UART in modes 1 or 3 (variable baud rates) and timer mode 2
(8-bit auto-reload mode). The chart also assumes a minimum
requirement of at least 9600 baud (including the use of SMOD for
baud rate doubling). More crystal frequencies are available if a lower
maximum baud rate is required.

The minimum timer count column indicates how many timer counts
are required at the stated crystal frequency in order to obtain the

maximum baud rate shown. The last column shows the timer reload
value that is used to obtain the minimum timer count. This is simply
256 minus the minimum timer count.

Timer reload values for other baud rates at the same crystal
frequency are determined by multiplying the minimum timer count by
two successively and calculating a new reload value as previously
mentioned. For instance, for 4800 baud at 1.8432 MHz, the timer
count would be 2 (twice what it is for 9600 baud), giving a timer
reload value of 254 (256 – 2) or FE hexadecimal.

Maximum Standard
Crystal (MHz)

Maximum
Baud Rate Timer Count

Timer Reload
Value (in hex)

1.8432 9600 1 FF

3.6864 19200 1 FF

5.5296 9600 3 FD

7.3728 38400 1 FF

9.2160 9600 5 FB

11.0592 19200 3 FD

12.9024 9600 7 F9

14.7456 76800
(2 × 3840)

1 FF

16.5888 9600 9 F7

18.4320 19200 5 FB

20.2752 9600 11 F5

22.1184 38400 3 FD

23.9616 9600 13 F3

25.8048 19200 7 F9

27.6840 9600 15 F1

29.4912 153600
(4 × 38400)

1 FF

31.3344 9600 17 EF

33.1776 19200 9 F7

35.0208 9600 19 ED

36.8640 38400 5 FB

Philips Semiconductors Microcontroller Products Application Note

AN448
Determining baud rates for 8051 UARTs
and other UART issues

June 1993 3

THE EFFECT OF USING OFF-FREQUENCY
CRYSTALS
Occasionally, one may wish to use an off-frequency crystal in a
design, but still want to make use of the UART for debug purposes.

Since most terminals (or other RS-232 devices) will communicate
with another device that has a baud rate that is off by several
percent, this can often be done successfully. WARNING: running the
UART off-frequency is NOT recommended if part of the application’s
normal operation involves communication with other RS-232
devices.

There is no exact limit on how much frequency error is tolerable,
since this depends on the devices communicating, the baud rates,
precise frequencies used by both devices, etc. However, a rule of
thumb may be used that the communication is likely to work if the
frequency is off by less than 5%. This somewhat arbitrary number
was arrived at as follows: for a ten-bit serial code (one start, 8 data
bits, one stop), a 10% data rate error will put the receiver off by
about plus or minus one bit time at the end of one data frame. A one
bit-time error seems rather excessive if one wants fairly reliable
communications. So, consider using half of that value (5%) as a rule
of thumb.

The consequence of all this is that one may often find a more
standard “off-the-shelf” crystal frequency to use in an application, if
the UART is being used for debugging, factory testing, etc. As an
example, consider the well-known “color burst” crystal. At 3.579545
MHz, this crystal is only about 3% slower than the 3.6864 MHz
crystal that may be desired for baud rate generation. As such, this
lower cost crystal could be used in place of the less standard one in
some cases. Another obvious replacement is to use the standard
14.31818 MHz crystal in place of the not-so-standard 14.7456 MHz
crystal that appears in the table. This replacement also yields a less
than 3% error and may be handy because it gives a fast instruction
execution rate for the 80C51, whereas 3.58 MHz may be too slow
for many applications.

It should also be remembered that RS-232 communications are
most robust if characters are not transmitted back-to-back. This can
become more important when the UART is deliberately used out of
spec as described here. When data is sent at full speed, there is no
chance for the receiver to re-synchronize to the transmitted frames if
it once gets out of synch. However, when there is a short pause
between characters (about 2 to 3 bit times or longer), the receiver
will generally be able to correctly locate start bits without framing
errors. In the worst case, a pause of one byte-time or longer in a
transmission should ALWAYS re-synchronize any receiver no matter
how out of synch it has become.

A LITTLE KNOWN PHENOMENON
In the UART setup code for most applications, the actual timer count
register (TL1) is not initialized. In many applications, this DOES
have an affect on the way the UART behaves on the first character
sent, although the chances of this being noticed are slight. This can
be seen by trying to observe the first character sent from the UART
on a logic analyzer that is being triggered by the end of
microcontroller reset. The first character will begin so far down the
time line that it will not be seen at any resolution on the logic
analyzer that would show any of the individual bits.

This effect occurs because TL1 has to time-out once before the first
character is transmitted. If TL1 is not initialized in the program, it will
have a reset value of 0. This could give the first timeout a duration of
up to 255 normal bit times, depending on the reload value for TH1
(which again depends on the baud rate and crystal frequency).

Again, in most applications, this would never be an issue. In fact, it
may often be an advantage to have a delay before the first serial
character is sent after power-up. But if the first serial character
should start sooner, TL1 may be initialized to some value other than
zero. For no delay, the same value used in TH1 should be used.

